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The spatial structure of ecological communities on tropical coral reefs across seascapes 
and geographies have historically been poorly understood. Here we addressed this for 
the first time using spatially expansive and thematically resolved benthic community 
data collected around five uninhabited central Pacific oceanic islands, spanning 6° 
latitude and 17° longitude. Using towed-diver digital image surveys over ~140 linear 
km of shallow (8–20 m depth) tropical reef, we highlight the autocorrelated nature of 
coral reef seascapes. Benthic functional groups and hard coral morphologies displayed 
significant spatial clustering (positive autocorrelation) up to kilometre-scales around 
all islands, in some instances dominating entire sections of coastline. The scale and 
strength of these autocorrelation patterns showed differences across geographies, but 
patterns were more similar between islands in closer proximity and of a similar size. 
For example, crustose coralline algae (CCA) were clustered up to scales of 0.3 km at 
neighbouring Howland and Baker Islands and macroalgae were spatially clustered at 
scales up to ~3 km at both neighbouring Kingman Reef and Palmyra Atoll. Of all the 
functional groups, macroalgae had the highest levels of spatial clustering across geog-
raphies at the finest resolution of our data (100 m). There were several cases where the 
upper scale at which benthic community members showed evidence of spatial cluster-
ing correlated highly with the upper scales at which concurrent gradients in physical 
environmental drivers were spatially clustered. These correlations were stronger for 
surface wave energy than subsurface temperature (regardless of benthic group) and turf 
algae and CCA had the closest alignments in scale with wave energy across functional 
groups and geographies. Our findings suggest such physical drivers not only limit or 
promote the abundance of various benthic competitors on coral reefs, but also play a 
key role in governing their spatial scaling properties across seascapes.
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Introduction

Patterns in nature are often highly scale dependent (Levin 
1992). Conclusions drawn from observations at one scale 
may be inconsistent when observing at another scale. Scales 
of observation in ecology are often chosen for arbitrary, logis-
tical or anthropocentric reasons and may not be appropri-
ate for the target organism, system or process in question 
(Addicott et al. 1987, Wiens and Milne 1989, Boström et al. 
2011). Such mismatches of scale can reduce our predictive 
capacity of ecosystem dynamics and lead to erroneous extrap-
olations over larger scales from spatially or temporally lim-
ited sampling observations (Hatcher et al. 1987, Schneider 
2001). Despite this, observational scales in ecology have 
generally remained constrained and limit our understand-
ing of the scaling of natural systems (Estes et al. 2018). By 
conducting ecological investigations at systematically varied 
scales, the dynamics of natural systems and how they vary as 
a function of scale can be properly quantified (Rahbek and 
Graves 2000, Nash et al. 2014).

Since the 1980s, ecology has benefitted from an advance-
ment of concepts related to ecological pattern and scale, 
including the idea that biological spatial patterns emerge at 
characteristic scales in response to their environment (Wiens 
and Milne 1989, Levin 1992, Schneider 1994). The pro-
gression of ‘landscape ecology’ theory occurred alongside an 
increased diversity of field techniques, most notably remote 
sensing technology (Dungan et al. 2002, Wagner and Fortin 
2005). These technologies greatly expanded scales of obser-
vation and enabled practical implications of landscape ecol-
ogy to be used in ecosystem management (Lee et al. 2008, 
De Knegt  et  al. 2011, Jones  et  al. 2013). Progression of 
theory within the marine environment has been slower due 
to logistical constraints of collecting comparable data across 
scales (Kenny  et  al. 2003, Hinchey  et  al. 2008, D’Urban 
Jackson  et  al. 2020), but has nonetheless emerged to form 
the discipline of ‘seascape ecology’ (Pittman et al. 2011).

On tropical coral reefs, spatial scales of observation were 
greatly expanded by the onset of remote sensing technology, 
permitting their global-scale mapping to a coarse taxonomic 
resolution (Mumby  et  al. 1997, Hochberg and Atkinson 
2003, Purkis 2018). More recently, in situ digital imaging 
techniques, such as structure-from-motion photogram-
metry, have enabled us to study the spatial ecology of coral 
reef benthic communities at higher taxonomic resolutions 
(Edwards  et  al. 2017, Pedersen  et  al. 2019). Despite these 
important advances, such data re-introduce the issue of lim-
ited sampling extents and previous research has instead tended 
to focus on comparing spatial patterns across discrete hierar-
chical scales (Murdoch and Aronson 1999, Williams  et  al. 
2015b). By combining high-resolution digital imagery with 
towed-diver surveys, recent research has started to reveal the 
spatial structure of coral reef benthic communities around 
entire tropical islands (Gove et al. 2015, Aston et al. 2019). 
These data present the opportunity to apply landscape eco-
logical theory and spatial pattern metrics to the marine realm 

to explore ecological patterns and processes across scales 
(Wedding et al. 2011).

Spatial autocorrelation is a long-standing statistical tech-
nique within ecology (Legendre 1993, Cocu  et  al. 2005) 
that describes the similarity of a given variable at nearby 
locations as being greater or less than expected by chance 
(Fortin et al. 2016). It can be quantified over multiple scales 
to show how species, habitats and environmental variables are 
spatially structured. Environmental conditions can be spa-
tially autocorrelated due to several factors, such as climate 
and geomorphologic processes, which in turn can drive the 
spatial autocorrelation patterns of ecological communities 
(Legendre 1993, Gobbi and Brambilla 2016).

The scale at which spatial autocorrelation is no longer 
present or changes from being clustered to over-dispersed can 
indicate a new process acting on biological variables (Zhang 
and Zhang 2011). Spatial autocorrelation has been used to 
quantify forest fragmentation (Zhang et al. 2009), optimise 
sampling protocols for marine macrobenthic invertebrate 
communities (Hamylton and Barnes 2018) and to relate 
spatial patterns of insect abundance to environmental gra-
dients (Cocu et al. 2005). On coral reefs, indices of spatial 
autocorrelation have been used to quantify the spatial pat-
terning of coral bleaching across scales of cm to 100s of m 
(Levy et al. 2018) and benthic communities up to kilometre-
scales around the circumference of a single tropical island 
(Aston et al. 2019). Despite these recent efforts, our under-
standing of the patterns of spatial autocorrelation of coral reef 
communities across scales and geographies remains limited.

Here we quantify the spatial scaling properties of tropi-
cal benthic communities over ~140 linear km of reef around 
the circumference of five uninhabited coral reef islands. By 
processing thousands of in situ benthic images and using in 
situ and modelled environmental data, we employ a spatial 
metric to quantify the patterning of competing functional 
groups, hard coral morphologies and their suspected physical 
drivers across scales. Wave energy and subsurface variations 
in seawater temperature, indicative of intra-island gradi-
ents in upwelling (Gove et al. 2006, Aston et al. 2019), can 
limit or promote the abundance of different benthic groups 
around tropical islands, including different morphologies 
(growth forms) of reef-building corals (Williams et al. 2013, 
Gove et al. 2015). We therefore expect these physical driv-
ers to play a role in the spatial ecology and spatial scaling of 
tropical benthic communities. Our study objectives were pri-
marily to test whether the intra-island distributions of ben-
thic communities differed from random and if so, up to what 
scales. We then asked how consistent these spatial scaling 
properties were across geographies and to what degree they 
correlated with the spatial scaling of concurrent gradients in 
physical drivers. Our study therefore establishes important 
baselines for the spatial ecology of coral reef benthic com-
munities in a world where escalating human interactions 
with coral reefs (Norström et al. 2016, Hughes et al. 2017, 
Williams  et  al. 2019) are fundamentally altering their bio-
logical–environmental relationships (Williams et al. 2015a).
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Methods

Study sites

Our study system consisted of five U.S.-affiliated coral reef 
islands and atolls (hereafter referred to as ‘islands’) spanning 
6° latitude and 17° longitude in the central Pacific Ocean 
(Fig. 1): Jarvis Island, Palmyra Atoll, Kingman Reef (Line 
Islands Archipelago), Howland Island and Baker Island (U.S. 
Phoenix Islands). In 1974, Jarvis, Baker and Howland became 
U.S. National Wildlife Refuges. Kingman and Palmyra were 
afforded the same protection in 2001. All five islands were 
declared part of the Pacific Remote Islands Marine National 
Monument in 2009, further affirming their protected status. 
Throughout their history, these five islands have lacked per-
manent human populations and represent some of the most 
remote coral reef ecosystems on the planet. As such, they 
offer the opportunity to study the ecology and natural varia-
tion of coral reefs in the absence of confounding direct local 
human impacts (Williams et al. 2015a, Heenan et al. 2020), 
within a relatively similar oceanographic and climatic setting 
(Gove et al. 2013).

Benthic community digital surveys and spatial 
processing

Digital benthic images were collected around the circumfer-
ence of each island using towed-diver surveys (Kenyon et al. 
2006) in March to April 2008 as part of the National Oceanic 
and Atmospheric Administration’s (NOAA) Pacific Island 
Fisheries Science Center’s (PIFSC) Pacific Reef Assessment 
and Monitoring Program (RAMP). This survey year was cho-
sen for the present study from the biennial/triennial surveys 
at each island spanning 2001 to the present due to: 1) rep-
resenting 10 yr of recovery potential following the suspected 
mass coral bleaching in 1998, and 2) being prior to a bleach-
ing event that affected the region in late 2009 to early 2010 
(Williams et al. 2010, Vargas-Ángel et al. 2011). As such, this 
survey year provided the least disturbed benthic community 
spatial patterns within the time series. Divers manoeuvred a 
sub-surface instrumented board towed by a surface boat at ~3 
km h−1 to target the 15 m depth contour around each island. 
The tow-board was equipped with a downward facing digital 
SLR camera (Canon EOS 10-D/50-D) and strobes, taking 
images every 15 s (equating to every ~15 m) from a height of 
~1 m above the benthos. The average area of the benthos that 
each survey image captured using this technique was 10.9 m2 
(SE = 0.1 m2, n = 700) (Kenyon et al. 2006).

Every alternate image was selected for subsequent analyses 
and images were filtered to only include those within a depth 
range of 8–20 m on the forereef habitat (reef slope facing the 
open ocean) of each island to ensure comparability with prior 
studies in the region (Gove et al. 2015, Williams et al. 2015a, 
Aston et al. 2019). We used the analysis software CoralNet 
(Beijbom et al. 2015) to overlay 10 points in a stratified-ran-
dom design over each photo and identify the benthos below 
each as either: hard coral (to morphology), macroalgae, soft 

coral, crustose coralline algae, turf algae, other invertebrates 
(echinoderm, bivalve, zoanthid, anemone, corallimorph) and 
bare sand (for detailed descriptions of functional groups and 
coral morphologies see Supplementary material Appendix 1 
Table A1, A2).

A global positioning system (GPS) aboard the boat time-
stamped to the camera and a SeaBird™ Electronics (SBE) 39 
subsurface pressure, temperature-depth recorder on the tow-
board, combined with a layback algorithm (Kenyon  et  al. 
2006), allowed each photograph to be georeferenced to the 
nearest ~3–5 m and depth referenced. For the few instances 
where depth data were missing, we used an interpola-
tion based on inverse distance weighting using the Spatial 
Analyst tool in ArcGIS (ver. 10.7.1) and matched the miss-
ing depths to interpolated depth data from the same island 
area from surveys in 2006 and 2010. Each island’s circum-
ference was divided into a series of discrete, sequentially 
numbered grid cells (100 m wide) using a custom Python 
script (sensu Aston  et  al. 2019, <https://doi.org/10.5281/
zenodo.1199350>); the number of grid cells around each 
island ranged from 77 to 340. Benthic image data were spa-
tially joined to each grid cell and, to be included in further 
spatial analyses, grid cells had to contain ≥ 4 benthic images 
(sensu Aston et al. 2019). To help satisfy this prerequisite and 
maximise spatial coverage around each island, for those grid 
cells with < 4 images we revisited our initial filtering step 
(where we excluded every alternate image) and re-selected 
some images for processing. In total, we processed 6022 
images across the five islands (Howland, 787; Baker, 838; 
Jarvis, 1107; Kingman, 1560; Palmyra, 1730) to calculate a 
mean cover value for each benthic variable per grid cell, with 
77–96% of grid cells containing data around the five islands 
(Supplementary material Appendix 1 Table A3).

Quantifying physical drivers

We calculated surface wave power using a 3-h output at 50 
km resolution from NOAA’s Wave Watch III global model 
(WWIII; <http://polar.ncep.noaa.gov/waves>). Wave power 
(W m−1) was calculated from significant wave height (Hs) and 
peak period (Tp), defined as:

WP
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where ρ is the density of seawater (1024 kg m−3) and g is the 
acceleration of gravity (9.8 m s−2). From this output, calcula-
tions using an incident wave swath method (sensu Aston et al. 
2019) estimated the wave power at regularly spaced locations 
around each island, ranging from ~100–500 m depending on 
island size We calculated an integrated 10-yr average (1998–
2008) in wave energy flux (kW h m−1) for each location and 
used a 250 m radial buffer around each location to spatially 
join to the 100 m grid cells, averaging values within cells that 
contained multiple overlapping buffers.
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Figure 1. Spatial variations in percentage cover of coral reef benthic functional groups and dominant hard coral morphologies on the outer 
reef slopes (~15 m depth) of five uninhabited central Pacific islands collected via towed-diver digital image surveys in 2008 across ~140 
linear km of reef (n = 6022 images). The white cells around each island are 100-m grid cells that overlap the towed-diver tracks and are used 
to spatially reference benthic images (their numbers start due north and correspond with those on the island rosette plots). Grey regions on 
the rosette plots represent missing data regions. The islands are ordered in increasing size top to bottom.
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In situ seawater temperature was recorded during each 
towed-diver survey in 2008 using the SBE39 logger attached 
to the towboard (10 s sample rate, 0.002°C accuracy). Despite 
being a temporal snapshot, these in situ temperature data 
capture long-term intra-island gradients in sub-surface tem-
perature that are indicative of localised upwelling (Gove et al. 
2006). Like the benthic and wave data, we spatially joined 
the subsurface temperature data to each discrete island grid 
cell and calculated a mean value per cell.

Spatial statistics and sensitivity analyses

To quantify changes in the spatial autocorrelation of benthic 
communities and their physical drivers across scales, we used 
the Moran’s I statistic (Moran 1950) within a custom-coded 
function (Aston et al. 2019) in the R programming language 
(R Core Team), and which we build upon here to allow the 
comparison of these patterns across islands. When calculating 
the Moran’s I statistic for hard coral morphologies, we selected 
the two to three most abundant morphologies at each island. 
We defined the observed Moran’s I value (OMI) as:
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where n is the number of observations, wi,j is the matrix of 
weights according to the inverse Euclidean distance between 
observations, xi is the observed value at location i, xj is the 
observed value at location j, x  is the mean value and S0 is the 
sum of spatial weights. The spatial weights are defined as the 
inverse of the minimum distance, di,j, around the circumfer-
ence of each island between locations i and j, as follows:
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A significant (p < 0.05) departure from an OMI value of zero 
(i.e. away from a random distribution) indicated that the spa-
tial pattern of the variable in question at that scale was highly 
organised in space. Positive OMI values indicated positive 
autocorrelation (i.e. spatial clustering), while negative OMI 
values indicated negative autocorrelation (i.e. over-disper-
sion). We calculated the Moran’s I statistic at the finest spa-
tial resolution of the data (100 m grid cells), and then again 
in a moving window averaging process at increasing 100-m 
increments to a maximum scale of 4 km (limited by replica-
tion beyond that scale due to island size). Grid cells contain-
ing ‘no data’ (i.e. < four benthic images) were excluded from 
the moving window averaging process. As spatial patterns in 
nature can be anisotropic, at each scale we re-computed the 

Moran’s I statistic and p-value for all possible 100 m grid cell 
starting locations of the moving window averaging process 
and iterating in both directions around the circumference of 
each island. We report the mean, maximum and minimum 
OMI value for each scale from this process and the scale at 
which the upper bound of p exceeded 0.05 (i.e. did not differ 
significantly from a random spatial distribution).

As the number of grid cells with ‘no data’ varied across 
islands (Fig. 1), we performed a series of sensitivity analy-
ses to quantify the possible impact this might have on our 
comparison of spatial autocorrelation patterns. At Kingman, 
21% of grid cells had ‘no data’ (81 out of 380). For the other 
islands, we assigned ‘no data’ values to grid cells at random 
until we reached the same ratio of missing data as Kingman, 
then repeated our moving window averaging process and 
recalculated the Moran’s I statistic. We repeated this at each 
island 100 times, each time randomising the ‘no data’ grid 
cell locations. From the iterations, we calculated a mean re-
sampled OMI and p-value and identified the smallest and 
largest scale at which p ≥ 0.05 (Supplementary material 
Appendix 1 Fig. A1).

Results

The spatial scaling of coral reef benthic communities 
across geographies

The spatial distribution of benthic functional groups 
appeared non-random around the circumference of each 
island, with some groups dominating large expanses of coast-
lines for several km (Fig. 1). On occasion, these regions of 
spatial dominance showed consistencies between islands. For 
example, macroalgae was spatially clumped along the south-
east coast of Kingman and the south coast of neighbouring 
Palmyra, reaching 11–46% cover over a 1.8 km stretch of 
coastline at Kingman and 25–68% along a 1.5 km stretch 
at Palmyra (Fig. 1). Different coral morphologies also exhib-
ited non-random distributions, and again displayed discrete 
zones of spatial dominance along coastlines (Fig. 1). For 
example, plating coral peaked at 70% cover and dominated 
1.2 km of Kingman’s south coast, while branching coral cover 
dominated the northeast coast of neighbouring Howland and 
Baker for 1.1 km and 1.2 km, respectively (Fig. 1).

All benthic functional groups displayed strong evidence 
of spatial clustering (positive autocorrelation) around the 
circumference of each island, but the scale and strength of 
this autocorrelation differed between islands (Fig. 2). Around 
Howland, crustose coralline algae (CCA) and turf algae 
showed positive spatial autocorrelation at scales up to 0.3 
km and CCA had similar spatial clustering at neighbouring 
Baker. Around Kingman, Jarvis and Baker, turf algae were 
spatially clustered across the seascape at scales of ~1 km. 
Macroalgae and hard corals displayed comparable scaling 
patterns at neighbouring Howland and Baker; both groups 
were spatially clustered at scales up to ~500 m at Howland 
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and ~1 km at Baker. These inter-island spatial autocorrela-
tion patterns were robust to variations in the number and 
spatial distribution of grid cells containing no data; the scales 
at which benthic functional groups significantly differed 
from random only changed by up to 100 m (Supplementary 
material Appendix 1 Fig. A1). Macroalgae were the most spa-
tially clustered of any functional group at the finest resolu-
tion of our data (100 m), having a consistently high observed 
Moran’s I index of ~0.4 around Baker, Kingman and Palmyra 
(Fig. 2). However, the spatial distribution of macroalgae at 
Jarvis did not differ from random at any scale, likely due to 
its low island-mean cover of 1.8% (almost three times lower 
than at Kingman, the island with the next lowest abundance).

Different coral morphologies also showed strong evidence 
of spatial clustering around the circumference of each island, 
with some consistencies in scaling between morphologies of 
the same type at different islands (Fig. 3). At neighbouring 
Howland and Baker, branching corals were spatially clustered 
up to scales of 700–800 m and followed a similar gradient 
in spatial autocorrelation across scales (Fig. 3). The scal-
ing of encrusting corals was also similar between Kingman, 
Howland and Palmyra, being spatially clustered up to scales 
of 1.1–1.3 km (Fig. 3). Branching corals at Howland and 
Baker and plating corals at Jarvis had their highest degree 
of spatial clustering at the finest spatial resolution (100 m) 
(Fig. 3). In contrast, plating corals at other islands, as well as 
submassive, corymbose and encrusting coral morphologies, 
peaked in autocorrelation at a 200 m scale, suggesting a less 
clustered distribution at smaller spatial scales (Fig. 3).

Correlation between the spatial scaling properties of 
benthic communities and their physical drivers

There were cases where the upper scale of significant spatial 
clustering remained similar between benthic community 
members and the physical drivers. At the functional group 
resolution, this overall correlation was stronger for wave 
energy (ρ = 0.73) than for subsurface temperature (ρ = 0.46) 
as well as individually for any single benthic functional group 
(ρ = 0.71–0.93 for wave energy, 0.37–0.82 for subsurface 
temperature) (Fig. 4) (see Supplementary material Appendix 
1 Fig. A2 for spatial autocorrelation patterns in wave energy 
and subsurface temperature across scales). There was also 
inter-island variability in this alignment. For example, around 
Baker, wave energy was spatially clustered up to scales of ~1 
km and turf algae, macroalgae and hard coral were also clus-
tered up to ~1 km. Around Kingman, subsurface tempera-
ture and turf algae were both spatially clustered up to ~1 km, 
while wave energy and hard coral cover were both clustered 
up to scales of ~2.4 km. In contrast, there was consistently 
poor alignment at Palmyra, with none of the upper scales of 
significant autocorrelation in the benthic functional groups 
closely resembling those of the physical drivers (Fig. 4).

The correlation between the upper scale at which there 
remained significant spatial autocorrelation in the benthos 
and physical drivers was not as strong for hard coral morphol-
ogies (ρ = 0.50 and 0.46 for wave energy and subsurface tem-
perature, respectively). There was substantial variation across 
the different coral morphologies, with some showing closer 

Figure 2. Patterns of spatial autocorrelation (solid coloured line) in the percentage cover of benthic functional groups at increasing 100-m scale 
increments around five uninhabited central Pacific islands. The observed Moran’s I (OMI) value indicates a clustered distribution (+ve values), 
random distribution (0 value, horizontal dotted line) to increasingly dispersed (−ve values). The OMI is calculated for all possible starting 
points around each island and the range in these values for each scale is shown as the shaded region. The vertical dotted line shows the scale at 
which the OMI value is not significantly different from random for each benthic group (p ≥ 0.05). CCA, crustose coralline algae.
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alignment to the physical drivers than others. For example, 
the spatial scaling of plating corals closely matched those of 
wave energy regardless of island, and some coral morpholo-
gies appeared to be more closely aligned at specific islands 
than others (Fig. 5). Encrusting corals around Howland were 
spatially clustered up to 1.1 km, exactly matching the spatial 
scaling of subsurface temperature and wave energy. At Jarvis, 
plating corals were clustered up to 1.4 km, similar to the spa-
tial clustering exhibited by both subsurface temperature and 
wave energy (to within 200 m). Finally, at Kingman, encrust-
ing and submassive corals and subsurface temperature were 
spatially clustered up to scales of ~1 km, while plating cor-
als and wave energy were both clustered up to ~2 km scales 
(Fig. 5).

Discussion

The autocorrelated nature of coral reef seascapes

Our results show that coral reef benthic communities are nat-
urally spatially clustered across tropical island seascapes, with 
individual groups in some cases dominating entire kilometre-
sections of coastline (Fig. 1). Structural complexity of benthic 
assemblages can be influenced by the dominant functional 
group or coral morphology, which will have an effect on the 
spatial structure of reef-associated organisms, including fish 
communities (Alvarez-Filip  et  al. 2011, Richardson  et  al. 
2017). Furthermore, these sections of dominance are evi-
dence that ‘ecotones’ – discrete transition points between 

two communities or habitat types – exist around these tropi-
cal oceanic islands, which will likely have structuring effects 
on reef-associated organisms, akin to those of forest edges 
(Pfeifer et al. 2017) and coral reef-seagrass transition zones 
(Dorenbosch et al. 2005). Acknowledging the autocorrelated 
nature of coral reef benthic communities, may have impor-
tant management implications. For example, larger patches 
dominated by hard coral of a structurally complex morphol-
ogy with a seagrass-hard coral ecotone, may be more ben-
eficial to maintain ecosystem structure and function. Such 
patterns of naturally occurring spatial autocorrelation should 
be considered in marine spatial planning and coral restora-
tion efforts that may attempt to mimic the inherent spatial 
properties of coral reefs.

The spatial scaling patterns of benthic groups differed 
across geographies but had the common attribute of display-
ing positive spatial autocorrelation up to several kilometres 
of scale across all five study islands. Previously, Bradbury and 
Young (1983) found corals to be spatially clumped at 60-m 
scales across shallow reef flats and reef crests of the Great 
Barrier Reef in Australia. Edwards  et  al. (2017) also found 
most coral taxa were spatially clustered within 100 m2 plots at 
10 m depth on the outer reef slope of Palmyra Atoll, central 
Pacific (one of our study islands). We found the highest levels 
of positive autocorrelation in all benthic community mem-
bers at our smallest spatial scales (100–200 m) around all five 
of our study islands. We therefore hypothesise that positive 
autocorrelation, particularly at smaller scales, is a common 
spatial attribute of corals and other benthic organisms across 
depths, reef habitats and geographies.

Figure 3. Patterns of spatial autocorrelation (solid coloured line) in the percentage cover of dominant hard coral morphologies at increasing 
100-m scale increments around five uninhabited central Pacific islands. The observed Moran’s I (OMI) value indicates a clustered distribu-
tion (+ve values), random distribution (0 value, horizontal dotted line) to increasingly dispersed (−ve values). The OMI is calculated for all 
possible starting points around each island and the range in these values for each scale is shown as the shaded region. The vertical dotted 
line shows the scale at which the OMI value is not significantly different from random for each benthic group (p ≥ 0.05).



195

Drivers of coral reef benthic community seascapes

The non-random spatial dominance of benthic functional 
groups and hard coral morphologies around kilometre-sec-
tions of our five study islands likely exist, in part, because of 
concurrent gradients in the physical environment. Physical 
environmental drivers are key determinants of benthic com-
munity structure around oceanic islands, promoting or limit-
ing the abundance of competitors particularly in the absence 
of local human impacts (Gove  et  al. 2015, Williams  et  al. 
2015a). Howland, Baker and Jarvis have pronounced cross-
island gradients in subsurface temperature, reflective of local-
ised upwelling along their western coasts that results in the 
up-slope movement of deep, cold, nutrient-rich waters onto 
shallow reef communities (Gove  et  al. 2006, Tsuda  et  al. 
2008, Aston et al. 2019). Algae can benefit from increased 
growth under high nutrient conditions on coral reefs 
(Littler et al. 1983, Miller et al. 1999), which may explain 
spatial clustering of turf algae and macroalgae along continu-
ous kilometre-scale sections of Baker and Howland’s western 
coasts, respectively. As well as benefiting algae, upwelling can 
enhance growth rates in reef-building corals (Diaz-Pulido 
and Garzón-Ferreira 2002, Edmunds and Leichter 2016) by 
providing heterotrophic energetic subsidies (Williams et  al. 

2018). In some cases, this can give corals a competitive advan-
tage over algae and strong upwelling is thought to explain the 
kilometre-sections of hard coral dominance along the western 
coast of Jarvis (Aston et al. 2019).

Like competing benthic functional groups, individual 
hard coral morphologies displayed strong spatial cluster-
ing along kilometre-sections of the island coastlines that are 
also likely driven, in part, by gradients in physical drivers. 
Our results indicate that the high spatial clustering of hard 
coral along the western coast of Jarvis, a more wave-sheltered 
part of the island, is almost exclusively dominated by plating 
coral. Plating and branching corals are susceptible to break-
age and dislodgement by high wave energy (Madin  et  al. 
2014), whereas encrusting, digitate and massive coral mor-
phologies are more wave-resistant and dominate in more 
wave-exposed areas (Gove et al. 2015). Branching corals also 
dominated sections of Howland and Baker’s north-eastern to 
south-eastern coasts, which are sheltered from winter storm 
swells from the north–west (Mundy et al. 2010). In contrast, 
Palmyra’s northern coast is exposed to north–west winter 
swells (Williams et al. 2013) and here we saw spatial cluster-
ing of more wave-tolerant encrusting and corymbose corals.

Benthic functional groups not only dominated kilometre-
sections of island coastlines, but also showed non-random 

Figure 4. Correlation between the upper scale at which there remained significant spatial clustering in the benthic functional groups and 
physical drivers around five uninhabited central Pacific islands (diagonal dotted line is a 1:1 reference). Overall Spearman rank correlation 
coefficient (ρ) equaled 0.73 for wave energy and 0.46 for subsurface temperature. Correlation values for each individual benthic functional 
group and wave energy equaled: crustose coralline algae (CCA) = 0.81, turf algae = 0.93, hard coral = 0.71, macroalgae = 0.79), and for 
subsurface temperature equaled: CCA = 0.48, turf algae = 0.82, hard coral = 0.37, macroalgae = 0.47).
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patterns of spatial clustering across scales (Fig. 2, 3). In some 
cases, the upper scale at which benthic functional groups were 
spatially clustered around islands closely correlated with the 
upper scale at which the physical drivers were spatially clus-
tered (Fig. 4). This correlation was more evident with wave 
energy than subsurface temperature regardless of functional 
group. Across functional groups, the strongest correlations 
with the physical drivers were evident in turf algae and CCA. 
High wave energy often favours low-lying, wave-tolerant algae, 
such as turf and CCA and limits the dominance of larger 
upright macroalgae that, like some corals, are vulnerable to 
dislodgement (Page-Albins et al. 2012, Williams et al. 2013, 
Gove  et  al. 2015). Our findings suggest, that physical driv-
ers on coral reefs not only limit or promote the abundance of 
individual benthic groups, but also play a key role in governing 
their spatial scaling properties across tropical seascapes.

The spatial scaling of coral reef benthic communities was 
more similar between islands closer in proximity and size. 
For example, at neighbouring Kingman and Palmyra (63 
km apart), macroalgae were spatially structured up to ~3 km 
scales at both islands. At neighbouring Howland and Baker 
(69 km apart), CCA was spatially structured up to scales of 0.3 
km at both islands. We hypothesise that these common ben-
thic scaling patterns between closely situated islands reflect 
broader-scale autocorrelation in environmental conditions 

that exist across archipelagos, with islands in closer proxim-
ity exposed to similar surrounding environmental conditions 
(Gove et  al. 2013). Kingman and Palmyra also have much 
larger total reef areas and longer coastlines, producing more 
expansive areas of reef slope of the same aspect, than at the 
other three islands (Gove et al. 2016). This may allow envi-
ronmental homogeneity over greater linear extents, particu-
larly with regards to incoming wave energy and could give 
rise to the large homogeneous zones of spatial dominance by 
single benthic functional groups and coral morphologies that 
we observe at Kingman and Palmyra. Smaller coastlines and 
total reef areas at Howland, Baker and Jarvis could explain 
why benthic functional groups here, only remained spatially 
clustered at smaller spatial scales.

Our results support the expectation that environmental 
drivers can cause ecological responses at larger spatial scales, 
while biotic factors drive smaller-scale patterns and processes 
(Legendre 1993). We found the upper bounds in scale at 
which the benthic and physical variables showed spatial clus-
tering were highly correlated, suggesting that physical drivers 
set the upper spatial bounds in which benthic communities 
are spatially organised around tropical oceanic islands. At 
smaller spatial scales (100–200 m), we saw the highest degree 
of benthic community spatial clustering, which may be bet-
ter explained by biotic factors. For example, the dominant 

Figure 5. Correlation between the upper scale at which there remained significant spatial clustering in the dominant hard coral morpholo-
gies and physical drivers around five uninhabited central Pacific islands (diagonal dotted line is a 1:1 reference). Overall Spearman rank 
correlation coefficient (ρ) equaled 0.50 for wave energy and 0.46 for subsurface temperature. Note that unlike in Fig. 4, correlation values 
for individual morphologies are not calculated due to a lack of adequate replication across islands.
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macroalgae around our study islands are calcifying Halimeda 
(Vroom  et  al. 2010, Williams  et  al. 2013) that reproduce 
asexually over short distances by fragmentation. This type of 
reproduction could explain the high degrees of macroalgal 
spatial clustering at scales of 100–200 m around Kingman, 
Palmyra, Howland and Baker. Similarly, the high spatial clus-
tering of branching corals at smaller scales at Howland and 
Baker, could be explained by the branching corals all being 
fast-growing Acroporids that can also reproduce over short 
distances through fragmentation (Baird and Hughes 2000).

Conclusion

For the first time, we quantify the autocorrelated nature of 
coral reef seascapes across geographies in the absence of direct 
local human impacts. All major benthic functional groups 
and hard coral morphologies showed evidence of positive 
autocorrelation (spatial clustering) up to scales of 0.3–3.5 km 
around the circumference of five oceanic tropical islands. The 
scales across which benthic community members exhibited 
spatial structure and the strength of these autocorrelation pat-
terns differed between islands but was more similar between 
islands closer in proximity and of a similar size. In some cases, 
benthic community spatial scaling was similar to the scaling 
of concurrent gradients in physical drivers, in particular wave 
energy. This suggests that physical drivers not only play a role 
in governing patterns of community abundance on tropical 
coral reefs, but also contribute to determining their spatial 
scaling properties across the seascape. How these patterns of 
biological autocorrelation change in response to changes in 
physical gradients, such as those that occur during environ-
mental disturbance events, remains unknown and is an excit-
ing avenue for future research.
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